Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
उत्तर
LHS = `(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ)`
= `((1 + sinθ)(cosecθ + cotθ) - (1 - sinθ)(cosecθ - cotθ))/(cosec^2θ - cot^2θ)`
= `(cosecθ + cotθ + 1 + cosθ - cosecθ + cotθ + 1 - cosθ)/(1 + cot^2θ - cot^2θ)` (∵ `cosec^2θ = 1 + cot^2θ`)
= 2 + 2cotθ = 2(1 + cotθ)
Notes
θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?