Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
उत्तर
LHS = `(1 + cotA + tanA)(sinA - cosA)`
= `(1 + cosA/sinA + sinA/cosA)(sinA - cosA)`
= `((sinAcosA + cos^2A + sin^2A)/(sinAcosA))(sinA - cosA)`
= `((sin^3A - cos^3A))/(sinAcosA)` (∵(`sin^3A - cos^3A) = (sinA - cosA)(sinA cosA + cos^2A + sin^2A`))
= `sin^3A/(sinAcosA) - cos^3A/(sinAcosA)`
= `sin^2A/cosA - cos^2A/sinA = 1/cosA xx sin^2A - 1/sinA xx cos^2A`
= `secAsin^2A - cosecAcos^2A`
= `secA/(cosec^2A) - (cosecA)/sec^2A`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
What is the value of 9cot2 θ − 9cosec2 θ?
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If 1 – cos2θ = `1/4`, then θ = ?
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If 2sin2β − cos2β = 2, then β is ______.