Advertisements
Advertisements
प्रश्न
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
उत्तर
`5/(sin^2theta) - 5cot^2theta`
= `5 (1/(sin^2theta) - cot^2theta)`
= `5("cosec"^2theta - cot^2theta) ......[1/(sin^2theta) = "cosec"^2theta]`
= 5(1)
= 5.
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`