मराठी

If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.

बेरीज

उत्तर

Given that,

sin θ + cos θ = p       ...(i)

and sec θ + cosec θ = q

`\implies 1/cos θ + 1/sin θ` = q       ...`[∵ sec θ = 1/cos θ and "cosec"  θ = 1/sinθ]`

`\implies (sin θ + cos θ)/(sin θ . cos θ)` = q

`\implies "p"/(sin θ . cos θ)` = q           ...[From equation (i)]

`\implies` sin θ. cos θ = `"p"/"q"`         ...(ii)

sin θ + cos θ = p

On squaring both sides, we get

(sin θ + cos θ)2 = p2

`\implies` (sin2 θ + cos2 θ) + 2 sin θ . cos θ = p2      ...[∵ (a + b)2 = a2 + 2ab + b2]

`\implies` 1 + 2sin θ . cos θ = p2      ...[∵ sin2 θ + cos2 θ = 1]

`\implies` `1 + 2 . "p"/"q"` = p2         ...[From equation (iii)]

`\implies` q + 2p = p2q

`\implies` 2p = p2q – q

`\implies` q(p2 – 1) = 2p

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 10 | पृष्ठ ९९
सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 6 Trigonometry
Exercise 6.1 | Q 9. (i) | पृष्ठ २५०

संबंधित प्रश्‍न

Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


If `sec theta = x ,"write the value of tan"  theta`.


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If 3 sin θ = 4 cos θ, then sec θ = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


If tan α + cot α = 2, then tan20α + cot20α = ______.


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×