Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
उत्तर
Given that,
sin θ + cos θ = p ...(i)
and sec θ + cosec θ = q
`\implies 1/cos θ + 1/sin θ` = q ...`[∵ sec θ = 1/cos θ and "cosec" θ = 1/sinθ]`
`\implies (sin θ + cos θ)/(sin θ . cos θ)` = q
`\implies "p"/(sin θ . cos θ)` = q ...[From equation (i)]
`\implies` sin θ. cos θ = `"p"/"q"` ...(ii)
sin θ + cos θ = p
On squaring both sides, we get
(sin θ + cos θ)2 = p2
`\implies` (sin2 θ + cos2 θ) + 2 sin θ . cos θ = p2 ...[∵ (a + b)2 = a2 + 2ab + b2]
`\implies` 1 + 2sin θ . cos θ = p2 ...[∵ sin2 θ + cos2 θ = 1]
`\implies` `1 + 2 . "p"/"q"` = p2 ...[From equation (iii)]
`\implies` q + 2p = p2q
`\implies` 2p = p2q – q
`\implies` q(p2 – 1) = 2p
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If `sec theta = x ,"write the value of tan" theta`.
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If 3 sin θ = 4 cos θ, then sec θ = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If tan α + cot α = 2, then tan20α + cot20α = ______.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
(1 + sin A)(1 – sin A) is equal to ______.