मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below. Activity: L.H.S = □ = (sin2A + cos2A) (□) = 1(□) .....[sin2A+□=1] = □ – cos2A .....[sin2A = 1 – cos2A] = □ = R.H.S - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S

रिकाम्या जागा भरा
बेरीज

उत्तर

L.H.S = sin4A – cos4A 

= (sin2A)2 – (cos2A)2

 = (sin2A + cos2A) (sin2A – cos2A)    .....[∵ a2 – b2 = (a + b)(a – b)]

= 1(sin2A – cos2A)       .....[∵ sin2A + cos2A = 1]

= sin2A – cos2A

= 1 – cos2A – cos2A    .....[sin2A = 1 – cos2A]

= 1 – 2cos2A

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.3 (A)

संबंधित प्रश्‍न

If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


 Evaluate sin25° cos65° + cos25° sin65°


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×