Advertisements
Advertisements
प्रश्न
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
उत्तर
L.H.S = sin4A – cos4A
= (sin2A)2 – (cos2A)2
= (sin2A + cos2A) (sin2A – cos2A) .....[∵ a2 – b2 = (a + b)(a – b)]
= 1(sin2A – cos2A) .....[∵ sin2A + cos2A = 1]
= sin2A – cos2A
= 1 – cos2A – cos2A .....[sin2A = 1 – cos2A]
= 1 – 2cos2A
= R.H.S
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S