Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
उत्तर
We have to prove `(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
We know that `sin^2 A = cos^2 A = 1`
`So,
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 = sec A))`
`= (cos^2 A/sin^2 A(1/cos A - 1))/(1 + sin A)`
`= (cos^2 A/sin^2 A (1 - cos A)/(cos A))/(1 + sin A)`
`= (cos A(1 - cos A))/(sin^2 A(1 + sin A))`
`= (cos A (1 - cos A))/((1 - cos^2 A)(1 + sin A))`
`= (cos A (1 - cos A))/((1 - cos A)(1 + cos A)(1 + sin A))`
`= cos A/((1 + cos A)(1 + sin A))`
`= (1/sec A)/((1 + 1/sec A)(1 + sin A))`
`= (1/sec A)/(((sec A + 1)/sec A)) (1 + sin A)`
`= 1/((sec A +1)(1 + sin A))`
Multiplying both the numerator and denominator by (1 - sin A), we have
`= (1 - sin A)/((sec A + 1)(1 + sin A)(1 - sin A))`
`= (1 - sin A)/((sec A + 1)(1 - sin^2 A))`
`= (1 - sin A)/((sec A + 1)cos^2 A)`
`= sec^2 A ((1 - sin A))/((sec A + 1))`
`= sec^2 A ((1 - sin A)/(1 + sec A))`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Choose the correct alternative:
Which is not correct formula?
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`