मराठी

Prove the Following Trigonometric Identities. (Cot^2 A(Sec a - 1))/(1 + Sin A) = Sec^2 a ((1 - Sin A)/(1 + Sec A)) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`

उत्तर

We have to prove `(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`

We know that `sin^2 A = cos^2 A = 1`

`So,

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 = sec A))`

`= (cos^2 A/sin^2 A(1/cos A - 1))/(1 + sin A)`

`= (cos^2 A/sin^2 A (1 - cos A)/(cos A))/(1 + sin A)`

`= (cos A(1 - cos A))/(sin^2 A(1 + sin A))`

`= (cos A (1 - cos A))/((1 - cos^2 A)(1 + sin A))`

`= (cos A (1 - cos A))/((1 - cos A)(1 + cos A)(1 + sin A))`

`= cos A/((1 + cos A)(1 + sin A))`

`= (1/sec A)/((1 + 1/sec A)(1 + sin A))`

`= (1/sec A)/(((sec A + 1)/sec A)) (1 + sin A)`

`= 1/((sec A +1)(1 + sin A))`

Multiplying both the numerator and denominator by (1 - sin A), we have

`= (1 - sin A)/((sec A + 1)(1 + sin A)(1 - sin A))`

`= (1 - sin A)/((sec A + 1)(1 - sin^2 A))`

`= (1 - sin A)/((sec A + 1)cos^2 A)`

`= sec^2 A ((1 - sin A))/((sec A + 1))`

`= sec^2 A ((1 - sin A)/(1 + sec A))`

Hence proved.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 67 | पृष्ठ ४६

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


Choose the correct alternative:

Which is not correct formula?


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×