Advertisements
Advertisements
प्रश्न
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
उत्तर
cosec4 A (1 – cos4 A) – 2 cot2 A
= cosec4 A (1 – cos2 A) (1 + cos2 A) – 2 cot2 A
= cosec4 A (sin2 A) (1 + cos2 A) – 2 cot2 A
= cosec2 A (1 + cos2 A) – 2 cot2 A
=
= cosec2 A + cot2 A – 2 cot2 A
= cosec2 A – cot2 A
= 1
APPEARS IN
संबंधित प्रश्न
If
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identity.
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
Prove the following identity :
(sec θ + tan θ) . (sec θ – tan θ) = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
=
=
=
=
=
∴ L.H.S. = R.H.S.