Advertisements
Advertisements
Question
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Solution
cosec4 A (1 – cos4 A) – 2 cot2 A
= cosec4 A (1 – cos2 A) (1 + cos2 A) – 2 cot2 A
= cosec4 A (sin2 A) (1 + cos2 A) – 2 cot2 A
= cosec2 A (1 + cos2 A) – 2 cot2 A
= `cosec^2A + cos^2A/sin^2A - 2cot^2A `
= cosec2 A + cot2 A – 2 cot2 A
= cosec2 A – cot2 A
= 1
APPEARS IN
RELATED QUESTIONS
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`