Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
उत्तर
We have to prove `tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
We know that `sin^2 A + cos^2 A = 1`
So
`tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2`
`= tan A/(sec^2 A)^2 + cot A/(cosec^2 A)^2`
`= tan A/sec^4 A + cot A/(cosec^4 A)`
`= (sin A/cos A)/(1/cos^4 A) + (cos A/sin A)/(1/sin^4 A)`
`= (sin A cos^4 A)/cos A + (cos A sin^4 A)/sin A`
`= sin A cos^3 A + cos A sin^3 A`
`= sin A cos A (cos^2 A + sin^2 A)`
= sin A cos A
Hence proved.
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Find the value of ( sin2 33° + sin2 57°).
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Prove that `sec"A"/(tan "A" + cot "A")` = sin A