मराठी

Prove the Following Trigonometric Identities.Tan A/(1 + Tan^2 A)^2 + Cot A/(1 + Cot^2 A) = Sin A Cos a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`

उत्तर

We have to prove `tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`

We know that `sin^2 A + cos^2 A = 1`

So

`tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2`

`= tan A/(sec^2 A)^2  + cot A/(cosec^2 A)^2`

`= tan A/sec^4 A  + cot A/(cosec^4 A)`

`= (sin A/cos A)/(1/cos^4 A) + (cos A/sin A)/(1/sin^4 A)`

`= (sin A cos^4 A)/cos A + (cos A sin^4 A)/sin A`

`= sin A cos^3 A + cos A sin^3 A`

`= sin A cos A (cos^2 A + sin^2 A)`

= sin A cos A

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 65 | पृष्ठ ४६

संबंधित प्रश्‍न

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Find the value of ( sin2 33° + sin2 57°).


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×