Advertisements
Advertisements
प्रश्न
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
उत्तर
(tan A + cot A) (cosec A – sin A) (sec A – cos A)
= `(sinA/cosA + cosA/sinA)(1/sinA - sinA)(1/cosA - cosA)`
= `((sin^2A + cos^2A)/(sinAcosA))((1 - sin^2A)/sinA)((1 - cos^2A)/cosA)`
= `(1/(sinAcosA))(cos^2A/sinA)(sin^2A/cosA)`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`