मराठी

If X= a Sec `Theta + B Tan Theta and Y = a Tan Theta + B Sec Theta ,"Prove That" (X^2 - Y^2 )=(A^2 -b^2)` - Mathematics

Advertisements
Advertisements

प्रश्न

If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`

उत्तर

We have `x^2 - y^2 = [( a sec theta + b tan theta )^2 - ( a tan  theta + b sec theta )^2]`

                              =`(a^2 sec^2 theta + b^2 tan^2 theta + 2 ab sec theta tan theta)`

                           `  -(a^2 tan^2 theta + b^2 sec^2 theta + 2 ab tan theta sec theta)`

                           =`a^2 sec^2 theta + b^2 tan^2 theta - a^2 tan^2 theta - b^2 sec^2 theta`

                          =`(a^2 sec^2 theta - a^2 tan^2 theta)-( b^2 sec^2 theta - b^2 tan ^2 theta)`

                        =`a^2 ( sec^2 theta - tan^2 theta )-b^2 ( sec^2 theta - tan^2 theta)`

                       =`a^2 - b^2                     [∵ sec^2 theta - tan^2 theta =1]`

 Hence, `x^2 - y^2 = a^2 - b^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 2

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 2 | Q 2

संबंधित प्रश्‍न

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Prove the following identity :

`cosec^4A - cosec^2A = cot^4A + cot^2A`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


Choose the correct alternative:

sec 60° = ?


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Prove that sin4A – cos4A = 1 – 2cos2A


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×