Advertisements
Advertisements
प्रश्न
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
उत्तर
We have `x^2 - y^2 = [( a sec theta + b tan theta )^2 - ( a tan theta + b sec theta )^2]`
=`(a^2 sec^2 theta + b^2 tan^2 theta + 2 ab sec theta tan theta)`
` -(a^2 tan^2 theta + b^2 sec^2 theta + 2 ab tan theta sec theta)`
=`a^2 sec^2 theta + b^2 tan^2 theta - a^2 tan^2 theta - b^2 sec^2 theta`
=`(a^2 sec^2 theta - a^2 tan^2 theta)-( b^2 sec^2 theta - b^2 tan ^2 theta)`
=`a^2 ( sec^2 theta - tan^2 theta )-b^2 ( sec^2 theta - tan^2 theta)`
=`a^2 - b^2 [∵ sec^2 theta - tan^2 theta =1]`
Hence, `x^2 - y^2 = a^2 - b^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Choose the correct alternative:
sec 60° = ?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
Prove that sin4A – cos4A = 1 – 2cos2A
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`