Advertisements
Advertisements
प्रश्न
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
उत्तर
We have, 1 + cot2θ = cosec2θ
1 + `bb((40/9)^2)` = cosec2θ
1 + `bb(1600/81)` = cosec2θ
`(bb81 + bb1600)/bb81` = cosec2θ
`bb1681/bb81` = cosec2θ ......[Taking square root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/bb(41/9)`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`(sec^2 theta-1) cot ^2 theta=1`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If tan θ = `13/12`, then cot θ = ?
If 1 – cos2θ = `1/4`, then θ = ?