हिंदी

If cot θ = 40/9, find the values of cosec θ and sinθ, We have, 1 + cot2θ = cosec2θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`

रिक्त स्थान भरें
योग

उत्तर

We have, 1 + cot2θ = cosec2θ

1 + `bb((40/9)^2)` = cosec2θ

1 + `bb(1600/81)` = cosec2θ

`(bb81 + bb1600)/bb81` = cosec2θ

`bb1681/bb81` = cosec2θ  ......[Taking  square root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/bb(41/9)`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्न

Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


If tan θ × A = sin θ, then A = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Prove that sin6A + cos6A = 1 – 3sin2A . cos2A


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×