Advertisements
Advertisements
प्रश्न
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
उत्तर
Given:
x = 3cosecθ + 4cotθ .....(1)
y = 4cosecθ – 3cotθ .....(2)
Multiplying (1) by 4 and (2) by 3, we get
4x = 12cosecθ + 16cotθ .....(3)
3y = 12cosecθ – 9cotθ .....(4)
Subtracting (4) from (3), we get
4x − 3y = 25cot θ
⇒ cot2θ = \[\left( \frac{4x - 3y}{25} \right)^2\] .....(5)
Multiplying (1) by 3 and (2) by 4, we get
3x = 9cosecθ + 12cotθ .....(6)
4y = 16cosecθ – 12cotθ .....(7)
Adding (6) and (7), we get
3x + 4y = 25cosecθ
⇒ cosecθ = \[\frac{3x + 4y}{25}\]
⇒ cosec2θ = \[\left(\frac{3x + 4y}{25}\right)^2\] .....(8)
\[{cosec}^2 \theta - \cot^2 \theta = \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]
\[ \Rightarrow \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]
\[ \Rightarrow \frac{1}{{25}^2}\left[ \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 \right] = 1\]
\[ \Rightarrow \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 = 625\]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
sin2θ + sin2(90 – θ) = ?
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.