मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Eliminate θ, If X = 3 Cosec θ + 4 Cot θ Y = 4 Cosec θ – 3 Cot θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ

बेरीज

उत्तर

Given:
x = 3cosecθ + 4cotθ              .....(1)
y = 4cosecθ – 3cotθ              .....(2)

Multiplying (1) by 4 and (2) by 3, we get
4x = 12cosecθ + 16cotθ         .....(3) 
3y = 12cosecθ – 9cotθ           .....(4) 

Subtracting (4) from (3), we get
4x − 3y = 25cot θ

⇒ cot θ = \[\frac{4x - 3y}{25}\]

⇒ cot2θ = \[\left( \frac{4x - 3y}{25} \right)^2\]             .....(5)

Multiplying (1) by 3 and (2) by 4, we get
3x = 9cosecθ + 12cotθ          .....(6) 
4y = 16cosecθ – 12cotθ        .....(7) 
Adding (6) and (7), we get
3x + 4y = 25cosecθ

⇒ cosecθ = \[\frac{3x + 4y}{25}\]

⇒ cosec2θ = \[\left(\frac{3x + 4y}{25}\right)^2\]          .....(8)

\[{cosec}^2 \theta - \cot^2 \theta = 1\]

\[{cosec}^2 \theta - \cot^2 \theta = \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]

\[ \Rightarrow \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]

\[ \Rightarrow \frac{1}{{25}^2}\left[ \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 \right] = 1\]

\[ \Rightarrow \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 = 625\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) B

संबंधित प्रश्‍न

Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


sin2θ + sin2(90 – θ) = ?


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×