मराठी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: cosA1+sinA+1+sinAcosA= 2secA - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`

बेरीज

उत्तर

L.H.S 

`cos A/(1 + sin A) + (1 + sin A)/cos A `

= `(cos^2A+(1+sinA)^2)/((1+sinA)(cosA))`

= `(cos^2A + 1+sin^2A + 2sinA)/((1+sinA)(cosA))`

= `(sin^2+cos^2A+1+2sinA)/((1+sinA)(cosA))`

= `(1+1+2sinA)/((1+sinA)(cosA))`

= `(2+2sinA)/((1+sinA)(cosA))`

= `(2(1+sinA))/((1+sinA)(cosA))`

= `2/(cosA)`

= 2 secA

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.02 | पृष्ठ १९३

संबंधित प्रश्‍न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


`(sec^2 theta -1)(cosec^2 theta - 1)=1`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


Write the value of tan1° tan 2°   ........ tan 89° .


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Choose the correct alternative:

1 + tan2 θ = ?


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

cos 45° = ?


Choose the correct alternative:

Which is not correct formula?


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×