English

Choose the Correct Alternative: - Geometry Mathematics 2

Advertisements
Advertisements

Question

Choose the correct alternative:

1 + tan2 θ = ?

Options

  • Sin2 θ

  • Sec2 θ

  • Cosec2 θ 

  • Cot2 θ

MCQ

Solution

sec2θ

Explanation:

1 + tan2θ = sec2θ

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Set 1

APPEARS IN

RELATED QUESTIONS

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


Prove that cot2θ × sec2θ = cot2θ + 1


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×