Advertisements
Advertisements
Question
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Solution 1
We have,
`=(\sec ^{2}\theta +\tan ^{2}\theta +2\sec \theta \tan\theta -1)/(\sec ^{2}\theta +\tan^{2}\theta +2\sec \theta \tan\theta +1)`
`=\frac{(\sec ^{2}\theta -1)+\tan ^{2}\theta +2\sec \theta \tan\theta }{\sec ^{2}\theta +2\sec \theta \tan \theta +(1+\tan^{2}\theta )`
`=(\tan ^{2}\theta +\tan ^{2}\theta +2\sec \theta \tan\theta )/(\sec ^{2}\theta +2\sec \theta \tan \theta +\sec^{2}\theta )`
`=\frac{2\tan ^{2}\theta +2\tan \theta \sec \theta }{2\sec^{2}\theta +2\sec \theta \tan \theta }`
`=\frac{2\tan \theta (\tan \theta +\sec \theta )}{2\sec \theta (\sec\theta +\tan \theta )}`
`=\frac{\tan \theta }{\sec \theta }=\frac{\sin \theta }{\cos \theta \sec\theta }`
= sinθ = RHS
Solution 2
Sec θ + tan θ = P
⇒ `1/cos θ + sin θ /cos θ = P`
⇒ `(1 + sin θ)/cos θ = P`
⇒ `(1 + sin θ)^2/cos^2 θ = P^2`, ....(Squaring both sides)
⇒ `(1 + sin^2 θ + 2 sin θ)/cos^2 θ = p^2`
⇒ `(1 + sin^2 θ + 2 sin θ + cos^2 θ)/(1 + sin^2 θ + 2 sin θ - cos^2 θ) = (p^2 + 1)/(p^2 - 1)` ....(Applying componendo and dividendo]
⇒ `(1 + 1 + 2 sin θ)/(sin^2 θ + sin^2 θ + 2 sin θ) = (p^2 + 1)/(p^2 - 1)`
⇒ `(2( 1 + sin θ))/(2 sin θ( 1 + sin θ)) = (p^2 + 1)/(p^2 - 1)`
⇒ `1/sin θ = (p^2 + 1)/(p^2 - 1)`
Taking reciprocals, we get,
⇒ sin θ = `(p^2 - 1)/(p^2 + 1)`
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`