Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
उत्तर
In the given question, we need to prove tan2 A + cot2 A = sec2 A cosec2 A − 2
Now using `tan theta = sin theta/cos theta` and `cot theta = cos theta/sin theta` in LHS we get
`tan^2 A + cot^2 A = sin^2 A/cos^2 A + cos^2 A/sin^2 A`
`= (sin^4 A + cos^4 A)/(cos^2 A sin^2 A)`
`= ((sin^2 A)^2 + (cos^2 A)^2)/(cos^2 A sin^2 A)`
Further, using the identity `a^2 + b^2 = (a + b)^2 - 2ab` we get
`((sin^2 A)^2 + (cos^2 A)^2)/(cos^2 A sin^2 A) = ((sin^2 A + cos^ A)^2 - 2 sin^2 A cos^2 A)/(sin^2 A cos^2 A)`
`= ((1)^2 - 2sin^2 A cos^2 A)/(sin^2 A cos^2 A)`
`= 1/(sin^2 A cos^2 A) - (2 sin^2 A cos^2 A)/(sin^2 A cos^2 A`
`= cosec^2 A sec^2 A - 2`
Since L.H.S = R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
From the figure find the value of sinθ.
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`