मराठी

Prove the Following Trigonometric Identities. `(1 - Tan^2 A)/(Cot^2 a -1) = Tan^2 A` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`

उत्तर

`(1 - sin^2 A/cos^2 A)/(cos^2 A/sin^2 A   -1) = ((cos^2 A - sin^2 A)/cos^2 A)/((cos^2 A - sin^2 A)/sin^2 A`

`= (sin^2 A)/cos^2 A`

`= tan^2 A`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 50 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


\[\frac{x^2 - 1}{2x}\] is equal to 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×