English

Prove the following trigonometric identities. sec A (1 − sin A) (sec A + tan A) = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1

Sum

Solution

We have to prove sec A(1 − sin A)(sec A + tan A) = 1

We know that sec2 A − tan2 A − 1 

So,

sec A(1 − sin A)(sec A + tan A) = {sec A(1 − sin A)}(sec A + tan A)

= (sec A − sec A sin A)(sec A + tan A)

= `(sec A - 1/cos A  sin A) (sec A + tan A)`     ...`(∵ sec theta = 1/costheta)`

= `(sec A - sin A/cos A) (sec A + tan A)`    ...`(∵ tan theta = sin theta/costheta)`

= (sec A − tan A)(sec A + tan A)

= sec2 A − tan2 A

= 1 = R.H.S.    ... (∵ sec2 θ = 1 tan2 θ)

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 18 | Page 44
Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (A) | Q 8 | Page 324

RELATED QUESTIONS

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


Simplify : 2 sin30 + 3 tan45.


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


(sec θ + tan θ) . (sec θ – tan θ) = ?


If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ


Show that tan4θ + tan2θ = sec4θ – sec2θ.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×