Advertisements
Advertisements
Question
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Solution
L.H.S. = `secA/(secA + 1) + secA/(secA - 1)`
= `(sec^2A - secA + sec^2A + secA)/(sec^2A - 1`
= `(2sec^2A)/tan^2A` ...(∵ sec2 A – 1 = tan2 A)
= `(2/cos^2A)/(sin^2A/cos^2A)`
= `2/sin^2A`
= 2 cosec2 A = R.H.S.
APPEARS IN
RELATED QUESTIONS
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?