English

Find the value of sin2θ + cos2θ Solution: In Δ ABC, ∠ABC = 90°, ∠C = θ° AB2 + BC2 = □ .....(Pythagoras theorem) Divide both sides by AC2 ABACBCACACACAB2AC2+BC2AC2=AC2AC2 ∴ ABACBCAC(AB2AC2)+(BC2AC2)=1 - Geometry Mathematics 2

Advertisements
Advertisements

Question

Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 

Fill in the Blanks
Sum

Solution

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = AC2   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = bbunderline(sintheta) and "BC"/"AC" = bbunderline(costheta)`

∴ `sin^2 theta  + cos^2 theta = bbunderline1` 

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


 Evaluate sin25° cos65° + cos25° sin65°


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×