Advertisements
Advertisements
Question
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Solution
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
L.H.S. = `(1 - tan^2theta)/(cot^2 theta - 1)`
= `1 - tan^2theta ÷ 1/(tan^2theta) - 1`
= `1 - tan^2theta ÷ (1 - tan^2theta)/(tan^2theta)`
= `(1 - tan^2theta) xx (tan^2theta)/((1 - tan^2 theta))`
= tan2 θ
L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`