Advertisements
Advertisements
Question
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Solution
We have to prove`(sec theta + cos theta)(sec theta - cos theta) = tan^2 theta + sin^2 theta`
We know that
`sin^2 theta + cos^2 theta = 1`
`sec^2 theta - tan^2 theta = 1`
`(sec theta + cos theta)(sec theta - cos theta) = sec^2 theta - cos^2 theta`
`= (1 + tan^2 theta) - (1 - sin^2 theta)`
`= 1 + tan^2 theta - 1 + sin^2 theta`
`= tan^2 theta + sin^2 theta`
APPEARS IN
RELATED QUESTIONS
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Evaluate `(tan 26^@)/(cot 64^@)`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`tan47/cot43`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find cosine of 65° 41’
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If 8 tan x = 15, then sin x − cos x is equal to
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
The value of the expression (cos2 23° – sin2 67°) is positive.