English

Prove the Following Trigonometric Identities. (Secθ + Cosθ) (Secθ − Cosθ) = Tan2θ + Sin2θ - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ

Solution

We have to prove`(sec theta + cos theta)(sec theta - cos theta) = tan^2 theta + sin^2 theta`

We know that

`sin^2 theta + cos^2 theta = 1`

`sec^2 theta - tan^2 theta = 1`

`(sec theta + cos theta)(sec theta - cos theta) = sec^2 theta - cos^2 theta`

`= (1 + tan^2 theta) - (1 - sin^2 theta)`

`= 1 + tan^2 theta - 1 + sin^2 theta`

`= tan^2 theta + sin^2 theta`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 17 | Page 44

RELATED QUESTIONS

`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`

 


Evaluate `(tan 26^@)/(cot 64^@)`

 


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Solve.
`tan47/cot43`


Evaluate:

14 sin 30° + 6 cos 60° – 5 tan 45°


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Use tables to find cosine of 65° 41’


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If 8 tan x = 15, then sin x − cos x is equal to 


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×