Advertisements
Advertisements
Question
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Solution
We know that for a triangle ABC,
∠A + ∠B + ∠C = 180°
∠B + ∠C = 180° − ∠A
`(angle "B" +angle "C")/2 = 90° - (angle"A")/2`
`((sin "B+C")/2) = sin (90°- "A"/2)`
= cos `("A"/2)`
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`cos55/sin35+cot35/tan55`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Write the maximum and minimum values of cos θ.
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.