English

Write the Maximum and Minimum Values of Cos θ. - Mathematics

Advertisements
Advertisements

Question

Write the maximum and minimum values of cos θ.

One Line Answer

Solution

The maximum value of cosθ is  1 and the minimum value of cosθ is -1 because value of cosθ lies between −1 and 1 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.4 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.4 | Q 2 | Page 55

RELATED QUESTIONS

Without using trigonometric tables evaluate the following:

`(i) sin^2 25º + sin^2 65º `


If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


Solve.
`cos22/sin68`


Solve.
sin42° sin48° - cos42° cos48°


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Prove that:

`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


Use tables to find cosine of 8° 12’


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


If the angle θ = –45° , find the value of tan θ.


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 


In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.

 

 


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


The value of tan 1° tan 2° tan 3°…. tan 89° is


If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×