Advertisements
Advertisements
Question
Write the maximum and minimum values of cos θ.
Solution
The maximum value of cosθ is 1 and the minimum value of cosθ is -1 because value of cosθ lies between −1 and 1
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Solve.
`cos22/sin68`
Solve.
sin42° sin48° - cos42° cos48°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 8° 12’
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
If the angle θ = –45° , find the value of tan θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
The value of tan 1° tan 2° tan 3°…. tan 89° is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.