Advertisements
Advertisements
Question
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Options
\[\frac{12}{5}\]
\[\frac{5}{12}\]
\[\frac{13}{12}\]
\[\frac{12}{13}\]
Solution
We have the following given data in the figure, `AD=4cm, BD=3 cm, CB=12 cm`
Now we will use Pythagoras theorem in, ΔABD
`AB=sqrt(3^2+4^2)`
= 5 cm
Therefore,
`cot θ =( CB)/(AB)`
=`12/5`
APPEARS IN
RELATED QUESTIONS
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Evaluate:
cosec (65° + A) – sec (25° – A)
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find cosine of 65° 41’
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the maximum and minimum values of sin θ.
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Find the value of the following:
sin 21° 21′
If cot( 90 – A ) = 1, then ∠A = ?
`(sin 75^circ)/(cos 15^circ)` = ?
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.