Advertisements
Advertisements
Question
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Solution
From the tables, it is clear that sin 22° 30' = 0.3827
Hence, θ = 22° 30'
APPEARS IN
RELATED QUESTIONS
If tan A = cot B, prove that A + B = 90
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Write the maximum and minimum values of sin θ.
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If A and B are complementary angles, then
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If sin 3A = cos 6A, then ∠A = ?
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.