Advertisements
Advertisements
Question
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Solution
LHS = sec 70° sin 70° + cos 20° cosec 70°
= sec (90° - 20°) sin 20° + cos 20° cosec (90° - 20°)
`= "cosec" 20°. 1/("cosec" 20°)+ 1/(sec 20°) sec 20°`
= 1 + 1
= 2
= RHS
APPEARS IN
RELATED QUESTIONS
Evaluate `(sin 18^@)/(cos 72^@)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
solve.
sec2 18° - cot2 72°
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find sine of 10° 20' + 20° 45'
Use trigonometrical tables to find tangent of 17° 27'
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If 8 tan x = 15, then sin x − cos x is equal to
The value of tan 1° tan 2° tan 3° ...... tan 89° is
In the following figure the value of cos ϕ is
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
If tan θ = 1, then sin θ . cos θ = ?
If sin 3A = cos 6A, then ∠A = ?
If x and y are complementary angles, then ______.