Advertisements
Advertisements
Question
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Solution
Given: ∠ A = 90°,
∠A + ∠B + ∠C = 180°
∠B + ∠C = 180° − ∠A
`(angle"B"+angle"C")/2 =90° - (angle"A")/2`
⇒ `tan ((angle"B"+angle"C")/2) = tan(90° - (angle"A")/2)`
⇒ `tan ((angle"B"+angle"C")/2) = cot ((angle"A")/2)`
⇒ `tan ((angle"B"+angle"C")/2) = cot ((90°)/2) = cot 45°`
⇒ `tan ((angle"B"+angle"C")/2) = 1`
APPEARS IN
RELATED QUESTIONS
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Evaluate `(sin 18^@)/(cos 72^@)`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Solve.
sin15° cos75° + cos15° sin75°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
cosec (65° + A) – sec (25° – A)
Use tables to find cosine of 2° 4’
Use trigonometrical tables to find tangent of 42° 18'
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the maximum and minimum values of cos θ.
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
The value of
Sin 2A = 2 sin A is true when A =
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
If tan θ = 1, then sin θ . cos θ = ?
`(sin 75^circ)/(cos 15^circ)` = ?