Advertisements
Advertisements
Question
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Solution
We know that for a triangle ΔABC
∠A + ∠B + ∠C = 180°
`(angleB + angleA)/2 = 90^circ - (angleC)/2`
`sin((A + B)/2) = sin(90^circ - C/2)`
= `cos(C/2)`
APPEARS IN
RELATED QUESTIONS
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is