Advertisements
Advertisements
Question
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
Solution
We have:
`A+B=90°`
`Cos B=3/5`
`A+B=90°`
⇒ `A=90-B`
⇒`Sin A=sin (90-B)`
⇒` Sin A= Cos B`
⇒ `sin A=3/5 [sin(90°-B)= cos B ]`
Hence the value of sin A is `3/5`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Evaluate cosec 31° − sec 59°
What is the value of (cos2 67° – sin2 23°)?
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Evaluate.
sin235° + sin255°
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If 8 tan x = 15, then sin x − cos x is equal to
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
The value of tan 1° tan 2° tan 3°…. tan 89° is
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.