Advertisements
Advertisements
Question
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Sum
Solution
(i) We have,
`\frac{\cos37^\text{o}}{\sin53^\text{o}}=\frac{\cos(90^\text{o}-53^\text{o})}{\sin53^\text{o}}=\frac{\sin53^\text{o}}{\sin53^\text{o}}=1`
[∵ cos(90º – θ) = sin θ]
(ii) We have,
`\frac{\sin 41^\text{o}}{\cos 49^\text{o}}=\frac{\sin(90^\text{o}-49^\text{o})}{\cos 49^\text{o}}=\frac{\cos49^\text{o}}{\cos 49^\text{o}}=1`
[∵ sin (90º – θ) = cos θ]
(iii) We have,
`\frac{\sin30^\text{o}17'}{\cos59^\text{o}43'}=\frac{\sin(90^\text{o}-59^\text{o}43')}{\cos59^\text{o}43'}=\frac{\cos59^\text{o}43'}{\cos 59^\text{o}43'}=1`
shaalaa.com
Is there an error in this question or solution?