Advertisements
Advertisements
प्रश्न
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
उत्तर
We have:
`A+B=90°`
`Cos B=3/5`
`A+B=90°`
⇒ `A=90-B`
⇒`Sin A=sin (90-B)`
⇒` Sin A= Cos B`
⇒ `sin A=3/5 [sin(90°-B)= cos B ]`
Hence the value of sin A is `3/5`
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Show that cos 38° cos 52° − sin 38° sin 52° = 0
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Solve.
`cos22/sin68`
Use tables to find cosine of 26° 32’
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Prove that:
sec (70° – θ) = cosec (20° + θ)
If 3 cos θ = 5 sin θ, then the value of
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: cos2 25° - sin2 65° - tan2 45°
`(sin 75^circ)/(cos 15^circ)` = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.