मराठी

If Cos θ = 2 3 Then 2 Sec2 θ + 2 Tan2 θ − 7 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 

पर्याय

  • 0

  •  3

MCQ

उत्तर

Given that:  `cos θ=2/3`

We have to find `2 sec^2 c+2 tan ^2 θ-7`

As we are given 

`cos θ=2/3` 

⇒ `"Base"=2`

⇒ `"Hypotenuse"=3` 

⇒ `"Perpendicular"= sqrt((3)^2-(2)^2)` 

⇒`"Perpendicular"=sqrt5` 

We know that: 

`cos θ="Base"/"Hypotenuse"` 

`tan θ= "Perpendicular"/"Base"` 

Now we have to find:` 2 sec^2θ+2 tan^2 θ-7.` so 

`2 sec^2θ+2 tan ^2 θ-7` 

=`2(3/2)^2+2(sqrt5/2)^2-7` 

= `18/4+10/4-7` 

=`(18+10-28)/4` 

= 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 31 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.


Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°


Use trigonometrical tables to find tangent of 37°


Use tables to find the acute angle θ, if the value of tan θ is 0.2419


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If the angle θ = –45° , find the value of tan θ.


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


If tanθ = 2, find the values of other trigonometric ratios.


Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°. 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 


Prove that:

cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.


The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×