Advertisements
Advertisements
प्रश्न
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
पर्याय
1
0
3
4
उत्तर
Given that: `cos θ=2/3`
We have to find `2 sec^2 c+2 tan ^2 θ-7`
As we are given
`cos θ=2/3`
⇒ `"Base"=2`
⇒ `"Hypotenuse"=3`
⇒ `"Perpendicular"= sqrt((3)^2-(2)^2)`
⇒`"Perpendicular"=sqrt5`
We know that:
`cos θ="Base"/"Hypotenuse"`
`tan θ= "Perpendicular"/"Base"`
Now we have to find:` 2 sec^2θ+2 tan^2 θ-7.` so
`2 sec^2θ+2 tan ^2 θ-7`
=`2(3/2)^2+2(sqrt5/2)^2-7`
= `18/4+10/4-7`
=`(18+10-28)/4`
= 0
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If the angle θ = –45° , find the value of tan θ.
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If tanθ = 2, find the values of other trigonometric ratios.
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If 3 cos θ = 5 sin θ, then the value of
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is