Advertisements
Advertisements
Question
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
Solution
We have: `sqrt3 sinθ = cosθ`
⇒ `sqrt3 sin θ=cos θ`
⇒` sinθ/cos θ=1/sqrt3`
⇒ `tan θ= tan 30°`
⇒`θ=30°`
Hence the acute angle is 30°`
APPEARS IN
RELATED QUESTIONS
What is the value of (cos2 67° – sin2 23°)?
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
solve.
cos240° + cos250°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use trigonometrical tables to find tangent of 37°
Use trigonometrical tables to find tangent of 17° 27'
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If 3 cos θ = 5 sin θ, then the value of
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Sin 2A = 2 sin A is true when A =
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
The value of tan 72° tan 18° is
Sin 2B = 2 sin B is true when B is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.