Advertisements
Advertisements
Question
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Solution
`sin26^circ/sec64^circ + cos26^circ/(cosec64^circ)`
= `sin26^circ/(sec(90^circ - 26^circ)) + cos26^circ/(cosec(90^circ - 26^circ))`
= `sin26^circ/(cosec26^circ) + cos26^circ/sec26^circ`
= sin226° + cos226°
= 1
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
Solve.
sin15° cos75° + cos15° sin75°
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If 8 tan x = 15, then sin x − cos x is equal to
If A and B are complementary angles, then
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is