English

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to - Mathematics

Advertisements
Advertisements

Question

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 

Options

  •  1

  • −1

  • \[\sqrt{3}\]

  • \[\frac{1}{\sqrt{3}}\]

MCQ

Solution

Given that:  sin θ=cos (20-45°) and θ and 2θ-45 are acute angle 

We have to find  tan θ 

⇒` sin θ=cos (2θ-45°)` 

⇒`90°-θ=2θ-45θ` 

⇒`3θ=135°` 

Where θ and` 2θ-45°`  are acute angles

Since `θ =45°` 

Now

tan θ 

 = tan 45°   Put θ=45° 

=1 

 

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 23 | Page 58
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×