Advertisements
Advertisements
Question
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Options
1
−1
\[\sqrt{3}\]
\[\frac{1}{\sqrt{3}}\]
Solution
Given that: sin θ=cos (20-45°) and θ and 2θ-45 are acute angle
We have to find tan θ
⇒` sin θ=cos (2θ-45°)`
⇒`90°-θ=2θ-45θ`
⇒`3θ=135°`
Where θ and` 2θ-45°` are acute angles
Since `θ =45°`
Now
tan θ
= tan 45° Put θ=45°
=1
APPEARS IN
RELATED QUESTIONS
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 47° 32'
Use tables to find sine of 62° 57'
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Prove that:
tan (55° - A) - cot (35° + A)
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
The value of tan 10° tan 15° tan 75° tan 80° is
In the following figure the value of cos ϕ is
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Solve: 2cos2θ + sin θ - 2 = 0.
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.