Advertisements
Advertisements
Question
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Solution
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
= `cos(90^circ - 20^circ)/(sin20^circ) + cos(90^circ - 31^circ)/(sin31^circ) - 8(1/2)^2`
= `sin20^circ/(sin20^circ) + sin31^circ/(sin31^circ) - 2`
= 1 + 1 – 2
= 0
APPEARS IN
RELATED QUESTIONS
Evaluate cosec 31° − sec 59°
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Solve.
`cos22/sin68`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°