Advertisements
Advertisements
Question
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Solution
sin (90° – 3A) . cosec 42° = 1
`cos3A. 1/(sin42^circ) = 1`
cos 3A = sin 42°
= sin (90° – 48°)
= cos 48°
3A = 48°
A = 16°
APPEARS IN
RELATED QUESTIONS
Solve.
`cos55/sin35+cot35/tan55`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find sine of 10° 20' + 20° 45'
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
`(sin 75^circ)/(cos 15^circ)` = ?
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
Sin 2B = 2 sin B is true when B is equal to ______.