Advertisements
Advertisements
Question
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Solution
Given in question: `Cosθ=2/3`
We have to find `sec θ-1/sec θ+1`
⇒ `(sec θ-1)/(sec θ+1)= (1/cos θ-1)/(1/cosθ+1)`
⇒ `(sec θ-1)/(sec θ+1)=(3/2-1)/(3/2+1)`
⇒`(sec θ-1)/(sec θ+1)=(1/2 )/ (5/2)`
⇒`(sec θ-1)/(sec θ+1)=1/5`
Hence the value of `(sec θ-1)/(sec θ+1)` is` 1/5`
APPEARS IN
RELATED QUESTIONS
Evaluate `(tan 26^@)/(cot 64^@)`
Solve.
`tan47/cot43`
Evaluate.
sin235° + sin255°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find sine of 34° 42'
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Prove that:
sec (70° – θ) = cosec (20° + θ)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
What is the maximum value of \[\frac{1}{\sec \theta}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.