Advertisements
Advertisements
Question
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Solution
4 cos2 A − 3 = 0
`cos A = sqrt(3)/2`
We know `cos 30^circ = sqrt(3)/2`
So, A = 30°
L.H.S. = sin 3A = sin 90° = 1
R.H.S. = 3 sin A – 4 sin3 A
= 3 sin 30° – 4 sin3 30°
= `3 xx 1/2 - 4 xx (1/2)^3` ...{∵ sin 30° = `1/2`}
= `3/2 - 4 xx 1/8`
= `3 /2 - 1/2`
= `2/2`
= 1
L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Use tables to find sine of 34° 42'
Use tables to find cosine of 2° 4’
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If A and B are complementary angles, then
The value of cos 1° cos 2° cos 3° ..... cos 180° is
The value of
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A