Advertisements
Advertisements
Question
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
Solution
sin A = `3/5` ...(i) [Given]
In ∆ABC,
Let ∠ABC = 90°
∴ sin A = `"BC"/"AC"` .....(ii) [By definition]
∴ `"BC"/"AC" = 3/5` ......[From (i) and (ii)]
Let BC = 3k, AC = 5k
In ∆ABC, ∠B = 90°
∴ AB2 + BC2 = AC2 ......[Pythagoras theorem]
∴ AB2 + (3k)2 = (5k)2
∴ AB2 + 9k2 = 25k2
∴ AB2 = 25k2 – 9k2
∴ AB2 = 16k2
∴ AB = 4k ......[Taking square root of both sides]
Now, tan A = `"BC"/"AB"` ......[By definition]
∴ tan A = `(3"k")/(4"k") = 3/4`
cos A = `"AB"/"AC"` ......[By definition]
∴ cos A = `(4"k")/(5"k") = 4/5`
∴ 4 tan A + 3 sin A = `4(3/4) + 3(3/5)`
= `3 + 9/5`
=`(15 + 9)/5`
= `24/5` ......(iii)
6cos A = `6(4/5) = 24/5` ......(iv)
∴ 4 tan A + 3 sin A = 6 cos A .....[From (iii) and (iv)]
APPEARS IN
RELATED QUESTIONS
Evaluate `(sin 18^@)/(cos 72^@)`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
cosec (65° + A) – sec (25° – A)
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Prove that:
sin (28° + A) = cos (62° – A)
If tanθ = 2, find the values of other trigonometric ratios.
Write the maximum and minimum values of sin θ.
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If 3 cos θ = 5 sin θ, then the value of
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If x and y are complementary angles, then ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.