English

Prove that 1+sinBcos B+cos B1+sinB = 2 sec B - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B

Sum

Solution

L.H.S = `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")`

= `((1 +sin "B")^2 + cos^2"B")/(cos "B"(1 + sin "B"))`

= `(1 +2sin"B" + sin^2"B" + cos^2"B")/(cos"B"(1 + sin"B"))`    ......[∵ (a + b)2 = a2 + 2ab + b2]

= `(1 + 2sin"B" + 1)/(cos"B"(1+ sin"B"))`   .....[∵ sin2B + cos2B = 1]

= `(2 + 2sin"B")/(cos"B"(1 + sin"B"))`

= `(2(1 + sin"B"))/(cos"B"(1 + sin"B"))`

= `2/"cos B"`

= 2 sec B

= R.H.S

∴ `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (B)

APPEARS IN

RELATED QUESTIONS

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Prove that:

tan (55° + x) = cot (35° – x)


If sin θ = `1/2`, then find the value of θ. 


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×