Advertisements
Advertisements
Question
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Solution
L.H.S = `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")`
= `((1 +sin "B")^2 + cos^2"B")/(cos "B"(1 + sin "B"))`
= `(1 +2sin"B" + sin^2"B" + cos^2"B")/(cos"B"(1 + sin"B"))` ......[∵ (a + b)2 = a2 + 2ab + b2]
= `(1 + 2sin"B" + 1)/(cos"B"(1+ sin"B"))` .....[∵ sin2B + cos2B = 1]
= `(2 + 2sin"B")/(cos"B"(1 + sin"B"))`
= `(2(1 + sin"B"))/(cos"B"(1 + sin"B"))`
= `2/"cos B"`
= 2 sec B
= R.H.S
∴ `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
APPEARS IN
RELATED QUESTIONS
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that:
tan (55° + x) = cot (35° – x)
If sin θ = `1/2`, then find the value of θ.
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.