Advertisements
Advertisements
Question
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solution
Given `cot theta = 1/sqrt3`
We have to find the value of the expression `(1 - cos^2 theta)/(2 - sin^2 theta)`
We know that
`1 + cot^2 theta = cosec^2 theta`
`=> cosec^2 theta = 1 + (1/sqrt3)^2 `
`=> cosec^2 theta = 4/3`
Using the identity `sin^2 theta + cos^2 theta =1` we have
`(1 - cos^2 theta)/(2 - sin^2 theta) = (sin^2 theta)/(2 - sin^2 theta)`
`= (1/(cosec^2 theta))/(2 - 1/(cosec^2 theta))`
`= 1/(2 cosec^2 theta - 1)`
`= 1/(2 xx 4/3 - 1)`
`=3/5`
Hence, the value of the given expression is 3/5
APPEARS IN
RELATED QUESTIONS
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find sine of 62° 57'
Use tables to find cosine of 26° 32’
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Write the maximum and minimum values of sin θ.
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A and B are complementary angles, then
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
The value of cos 1° cos 2° cos 3° ..... cos 180° is
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2