Advertisements
Advertisements
Question
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Options
tan 90°
1
sin 45°
sin 0°
Solution
We have to find the value of the following
`(1- tan^2 45°)/(1+tan^2 45°)`
so
`(1-tan^2 45°)/(1+tan^2 45°)`
=`(1-(-1)^2)/(1+(1)^2)`
=`0/1`
=` 0`
We know that tan `45°=1`
` sin 0°=0`
= `sin 0°`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Evaluate `(tan 26^@)/(cot 64^@)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
solve.
cos240° + cos250°
Evaluate.
sin235° + sin255°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
tan(55° - A) - cot(35° + A)
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
In the following figure the value of cos ϕ is
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Solve: 2cos2θ + sin θ - 2 = 0.