Advertisements
Advertisements
Question
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
Options
\[\frac{7}{8}\]
\[\frac{8}{7}\]
\[\frac{7}{4}\]
\[\frac{64}{49}\]
Solution
Given that: `tan^2 θ=8/7` and θis an acute angle
We have to find the following expression `((1+sinθ)(1-sin θ))/((1+cos θ)(1-cos θ))`
Since
`tan^2θ=8/7`
`tan θ=sqrt(8/7)`
`tan θ=sqrt8/sqrt7`
Since `tan θ="perpendiular"/"Base"`
⇒ `"Perpendicular"=sqrt8`
⇒ `"Base"=sqrt7`
⇒ `"Hypotenuse"
= sqrt(8+7)`
⇒ `"Hypotenuse"=sqrt15`
We know that `sinθ= "Perpendicular"/"Hypotenuse" and cos θ="Base"/"Hypotenuse"`
We find:
`((1+sinθ )(1-sin θ))/((1+cos θ)(1-cosθ))`
=`((1+sqrt8/sqrt15)(1-sqrt8/sqrt15))/((1+sqrt7/sqrt15)(1-sqrt7/sqrt15))`
=`((1-8/15))/((1-7/15))`
=`(7/15)/(8/15)`
=`7/8`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`cos22/sin68`
Solve.
`tan47/cot43`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Use tables to find cosine of 26° 32’
Use tables to find cosine of 65° 41’
Use trigonometrical tables to find tangent of 42° 18'
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
If tan θ = cot 37°, then the value of θ is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.