Advertisements
Advertisements
Question
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Options
\[\sin \frac{A}{2}\]
\[\cos \frac{A}{2}\]
\[- \sin \frac{A}{2}\]
\[- \cos \frac{A}{2}\]
Solution
We know that in triangle `ABC`
`A+B+C=180°`
⇒ `B+C=180°-A`
⇒` (B+C)/2=(90°)/2-A/2`
⇒ `sin ((B+C)/2)=sin (90°-A/2)`
`"since" sin (90°-A)=cos A`
So
`sin ((B+C)/2)= cos A`
APPEARS IN
RELATED QUESTIONS
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Solve.
`cos22/sin68`
Use tables to find cosine of 2° 4’
Use tables to find cosine of 9° 23’ + 15° 54’
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
The value of cos2 17° − sin2 73° is
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
The value of tan 72° tan 18° is
`(sin 75^circ)/(cos 15^circ)` = ?