English

If A, B and C Are Interior Angles of a Triangle Abc, Then Sin ( B + C 2 ) = - Mathematics

Advertisements
Advertisements

Question

If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]

Options

  • \[\sin \frac{A}{2}\]

  • \[\cos \frac{A}{2}\]

  • \[- \sin \frac{A}{2}\]

  • \[- \cos \frac{A}{2}\]

MCQ

Solution

We know that in triangle `ABC`

`A+B+C=180°`

⇒ `B+C=180°-A` 

⇒` (B+C)/2=(90°)/2-A/2` 

⇒ `sin ((B+C)/2)=sin (90°-A/2)`

`"since" sin (90°-A)=cos A` 

So 

`sin ((B+C)/2)= cos A` 

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 30 | Page 58
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×