English

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A. - Mathematics

Advertisements
Advertisements

Question

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Sum

Solution

We know that

⇒ cosec2 A = 1 + cot2 A

`1/(cosec^2A) = 1/(1+cot^2A)`

`sin^2A = 1/(1+cot^2A)`

`sinA = +- 1/(sqrt(1+cot^2A))`

`sqrt(1+cot^2A)` will always be positive as we are adding two positive quantities.

Therefore 

`sin A = 1/sqrt(1+cot^2A)`

we know that

⇒ `tan A =  (sin A)/(cos A)`

However  

⇒ `cot A = (cos A)/(sin A)`

Therefore, tan A = `1/cot A`

⇒ Also sec2 A = 1 + tan2 A

= `1+ 1/(cot^2A)`

= `(cot^2 A+1)/(cot^2 A)`

`sec A =sqrt(cot^2A+1)/cot A`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.4 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.4 | Q 1 | Page 193

RELATED QUESTIONS

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan A = cot B, prove that A + B = 90


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°


Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Use tables to find sine of 10° 20' + 20° 45'


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


Evaluate:

`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


Write the maximum and minimum values of sin θ.


Write the maximum and minimum values of cos θ.


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


Write the value of tan 10° tan 15° tan 75° tan 80°?


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


The value of tan 10° tan 15° tan 75° tan 80° is 


\[\frac{2 \tan 30°}{1 - \tan^2 30°}\]  is equal to ______.


Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


Solve: 2cos2θ + sin θ - 2 = 0.


If sin 3A = cos 6A, then ∠A = ?


Sin 2B = 2 sin B is true when B is equal to ______.


If sec A + tan A = x, then sec A = ______.


The value of the expression (cos2 23° – sin2 67°) is positive.


If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×