Advertisements
Advertisements
Question
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Solution
We know that
⇒ cosec2 A = 1 + cot2 A
`1/(cosec^2A) = 1/(1+cot^2A)`
`sin^2A = 1/(1+cot^2A)`
`sinA = +- 1/(sqrt(1+cot^2A))`
`sqrt(1+cot^2A)` will always be positive as we are adding two positive quantities.
Therefore
`sin A = 1/sqrt(1+cot^2A)`
we know that
⇒ `tan A = (sin A)/(cos A)`
However
⇒ `cot A = (cos A)/(sin A)`
Therefore, tan A = `1/cot A`
⇒ Also sec2 A = 1 + tan2 A
= `1+ 1/(cot^2A)`
= `(cot^2 A+1)/(cot^2 A)`
`sec A =sqrt(cot^2A+1)/cot A`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan A = cot B, prove that A + B = 90
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Write the maximum and minimum values of sin θ.
Write the maximum and minimum values of cos θ.
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of tan 10° tan 15° tan 75° tan 80° is
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Solve: 2cos2θ + sin θ - 2 = 0.
If sin 3A = cos 6A, then ∠A = ?
Sin 2B = 2 sin B is true when B is equal to ______.
If sec A + tan A = x, then sec A = ______.
The value of the expression (cos2 23° – sin2 67°) is positive.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.