Advertisements
Advertisements
प्रश्न
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
उत्तर
We know that
⇒ cosec2 A = 1 + cot2 A
`1/(cosec^2A) = 1/(1+cot^2A)`
`sin^2A = 1/(1+cot^2A)`
`sinA = +- 1/(sqrt(1+cot^2A))`
`sqrt(1+cot^2A)` will always be positive as we are adding two positive quantities.
Therefore
`sin A = 1/sqrt(1+cot^2A)`
we know that
⇒ `tan A = (sin A)/(cos A)`
However
⇒ `cot A = (cos A)/(sin A)`
Therefore, tan A = `1/cot A`
⇒ Also sec2 A = 1 + tan2 A
= `1+ 1/(cot^2A)`
= `(cot^2 A+1)/(cot^2 A)`
`sec A =sqrt(cot^2A+1)/cot A`
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
What is the value of (cos2 67° – sin2 23°)?
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`cos22/sin68`
Solve.
sin42° sin48° - cos42° cos48°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If the angle θ = –45° , find the value of tan θ.
If tanθ = 2, find the values of other trigonometric ratios.
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
The value of tan 1° tan 2° tan 3° ...... tan 89° is
The value of cos 1° cos 2° cos 3° ..... cos 180° is
Sin 2A = 2 sin A is true when A =
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Solve: 2cos2θ + sin θ - 2 = 0.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
The value of tan 1° tan 2° tan 3°…. tan 89° is
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
`tan 47^circ/cot 43^circ` = 1