हिंदी

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A. - Mathematics

Advertisements
Advertisements

प्रश्न

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

योग

उत्तर

We know that

⇒ cosec2 A = 1 + cot2 A

`1/(cosec^2A) = 1/(1+cot^2A)`

`sin^2A = 1/(1+cot^2A)`

`sinA = +- 1/(sqrt(1+cot^2A))`

`sqrt(1+cot^2A)` will always be positive as we are adding two positive quantities.

Therefore 

`sin A = 1/sqrt(1+cot^2A)`

we know that

⇒ `tan A =  (sin A)/(cos A)`

However  

⇒ `cot A = (cos A)/(sin A)`

Therefore, tan A = `1/cot A`

⇒ Also sec2 A = 1 + tan2 A

= `1+ 1/(cot^2A)`

= `(cot^2 A+1)/(cot^2 A)`

`sec A =sqrt(cot^2A+1)/cot A`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.4 | Q 1 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


What is the value of (cos2 67° – sin2 23°)?


if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`


Solve.
`cos22/sin68`


Solve.
sin42° sin48° - cos42° cos48°


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Evaluate:

tan(55° - A) - cot(35° + A)


Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Evaluate:

`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)` 


Prove that:

`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`


Prove that:

`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If the angle θ = –45° , find the value of tan θ.


If tanθ = 2, find the values of other trigonometric ratios.


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to 


The value of tan 1° tan 2° tan 3° ...... tan 89° is 


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


Sin 2A = 2 sin A is true when A =


If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


Solve: 2cos2θ + sin θ - 2 = 0.


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


The value of tan 1° tan 2° tan 3°…. tan 89° is


In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?


`tan 47^circ/cot 43^circ` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×